Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo.

نویسنده

  • S Schuster
چکیده

During their entire lives, weakly electric fish produce an uninterrupted train of discharges to electrolocate objects and to communicate. In an attempt to learn about activity-dependent processes that might be involved in this ability, the continuous train of discharges of intact Gymnotus carapo was experimentally interrupted to investigate how this pausing affects post-pause electric organ discharges. In particular, an analysis was conducted of how the amplitude and relative timing of the three major deflections of the complex discharge change over the course of the first 1000 post-pause discharges. The dependence of these variables on the duration of the preceding pause and on water temperature is analysed. In addition, pause-induced small reverberations at the end of the discharge are described. Common to all amplitude changes is a fast initial decrease in amplitude with a slow recovery phase; amplitude changes scale with the duration of the preceding pause and are independent of the interdischarge interval. The absence of changes in the postsynaptic-potential-derived first phase of the discharge together with changes in the amplitude ratio of the third and fourth deflections suggest that the amplitude changes are mainly due to pause-induced changes in the inner resistance of the electric organ. A model is formulated that approximates the pattern of amplitude changes. The post-pause changes described here may provide a new way to test current models of complex discharge generation in Gymnotus carapo and illustrate the speed at which changes of an electric organ discharge can take place.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavioral evidence for post-pause reduced responsiveness in the electrosensory system of Gymnotus carapo.

Gymnotiform weakly electric fish find their way in the dark using a continuously operating active sensory system. An electric organ generates a continuous train of discharges (electric organ discharges, EODs), and tuberous high-frequency electroreceptors monitor the pattern of transcutaneous current flow associated with each EOD. Here, I report that a prior interruption to the continuous train ...

متن کامل

Post-natal development of the electromotor system in a pulse gymnotid electric fish.

Some fish emit electric fields generated by the coordinated activation of electric organs. Such discharges are used for exploring the environment and for communication. This article deals with the development of the electric organ and its discharge in Gymnotus, a pulse genus in which brief discharges are separated by regular silent intervals. It is focused on the anatomo-functional study of fis...

متن کامل

Electroreception in G carapo: detection of changes in waveform of the electrosensory signals.

Electric fish evaluate the near environment by detecting changes in their self-generated electric organ discharge. To investigate impedance modulation of the self-generated electric field, this field was measured at the electrosensory fovea of Gymnotus carapo in the presence and absence of objects. Changes in local fields provoked by resistive objects were predicted by the change in total energ...

متن کامل

Agonistic-like responses from the torus semicircularis dorsalis elicited by GABA(A) blockade in the weakly electric fish Gymnotus carapo.

Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other stu...

متن کامل

Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.

Weakly electric fish generate meaningful electromotor behaviors by specific modulations of the discharge of their medullary pacemaker nucleus from which the rhythmic command for each electric organ discharge (EOD) arises. Certain electromotor behaviors seem to involve the activation of specific neurotransmitter receptors on particular target cells within the nucleus, i.e., on pacemaker or on re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 203 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2000